On microlocal analyticity of solutions of first-order nonlinear PDE

نویسنده

  • Shif BERHANU
چکیده

— We study the microlocal analyticity of solutions u of the nonlinear equation ut = f(x, t, u, ux) where f(x, t, ζ0, ζ) is complex-valued, real analytic in all its arguments and holomorphic in (ζ0, ζ). We show that if the function u is a C2 solution, σ ∈ CharLu and 1 i σ([Lu, Lu]) < 0 or if u is a C3 solution, σ ∈ CharLu, σ([Lu, Lu]) = 0, and σ([Lu, [Lu, Lu]]) 6= 0, then σ / ∈WFau. Here WFau denotes the analytic wavefront set of u and CharLu is the characteristic set of the linearized operator. When m = 1, we prove a more general result involving the repeated brackets of Lu and Lu of any order. Résumé. — Nous étudions l’analyticité microlocale des solutions de l’équation non linéaire ut = f(x, t, u, ux) où f(x, t, ζ0, ζ) est une fonction analytique réelle, à valeurs complexes, et holomorphe en (ζ0, ζ). Nous montrons que si u est une solution de classe C2, σ ∈ CharLu et 1 i σ([Lu, Lu]) < 0, ou si u est une solution de classe C3, σ ∈ CharLu, σ([Lu, Lu]) = 0 et σ([Lu, [Lu, Lu]]) 6= 0, alors σ 6∈WFa(u). Ici, WFa(u) désigne le front d’onde analytique de u et CharLu l’ensemble caractéristique de l’opérateur linéarisé. Quandm = 1, nous démontrons un résultat plus général faisant intervenir les crochets des opérateurs Lu et Lu de tout ordre.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fourth-order numerical solution of a fractional PDE with the nonlinear source term in the electroanalytical chemistry

The aim of this paper is to study the high order difference scheme for the solution of a fractional partial differential equation (PDE) in the electroanalytical chemistry. The space fractional derivative is described in the Riemann-Liouville sense. In the proposed scheme we discretize the space derivative with a fourth-order compact scheme and use the Grunwald- Letnikov discretization of the Ri...

متن کامل

Dhage iteration method for PBVPs of nonlinear first order hybrid integro-differential equations

In this paper, author proves the algorithms for the existence as well as the approximation of solutions to a couple of periodic boundary value problems of nonlinear first order ordinary integro-differential equations using operator theoretic techniques in a partially ordered metric space. The main results rely on the Dhage iteration method embodied in the recent hybrid fixed point theorems of D...

متن کامل

Image Zooming using Non-linear Partial Differential Equation

The main issue in any image zooming techniques is to preserve the structure of the zoomed image. The zoomed image may suffer from the discontinuities in the soft regions and edges; it may contain artifacts, such as image blurring and blocky, and staircase effects. This paper presents a novel image zooming technique using Partial Differential Equations (PDEs). It combines a non-linear Fourth-ord...

متن کامل

A nonlinear second order field equation – similarity solutions and relation to a Bellmann-type equation - Applications to Maxwellian Molecules

In this paper Lie’s formalism is applied to deduce classes of solutions of a nonlinear partial differential equation (nPDE) of second order with quadratic nonlinearity. The equation has the meaning of a field equation appearing in the formulation of kinetic models. Similarity solutions and transformations are given in a most general form derived to the first time in terms of reciprocal Jacobian...

متن کامل

On a Stochastic First Order Hyperbolic Equation in a Bounded Domain

In this paper, we are interested in the stochastic perturbation of a first order hyperbolic equation of nonlinear type. In order to illustrate our purposes, we have chosen a scalar conservation law in a bounded domain with homogeneous Dirichlet condition on the boundary. Using the concept of measure-valued solutions and Kruzhkov’s entropy formulation, a result of existence and uniqueness of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009